Sunday, August 24, 2008

Leukocytes - White blood cells - Part 3

Types of Agranulocytes

Lymphocyte:-


Lymphocytes are much more common in the lymphatic system. Lymphocytes are distinguished by having a deeply staining nucleus which may be eccentric in location, and a relatively small amount of cytoplasm. The blood has three types of lymphocytes:

Monocyte:-

Monocytes share the "vacuum cleaner" (phagocytosis) function of neutrophils, but are much longer lived as they have an additional role: they present pieces of pathogens to T cells so that the pathogens may be recognized again and killed, or so that an antibody response may be mounted. Monocytes eventually leave the bloodstream to become tissue macrophages which remove dead cell debris as well as attacking microrganisms. Neither of these can be dealt with effectively by the neutrophils. Unlike neutrophils, monocytes are able to replace their lysosomal contents and are thought to have a much longer active life. They have the kidney shaped nucleus and typically agranulated. They also possess abundant cytoplasm.

Macrophage:-

Once monocytes move from the bloodstream out into the body tissues, they undergo changes (differentiate) allowing phagocytosis and are then known as macrophages.

Leukocytes - White blood cells - Part 2

Types of Granulocytes

Neutrophil
es:-

Neutrophils defend against bacterial or fungal infection and other very small inflammatory processes that are usually first responders to microbial infection; their activity and death in large numbers forms pus. They are also known as polymorphonuclear leukocytes. They have a multilobed nucleus which may appear like multiple nuclei, hence the name polymorphonuclear leukocyte. The cytoplasm may look transparent because of fine granules that are faintly pink in color. Neutrophils are very active in phagocytosing bacteria and are present in large amount in the pus of wounds. These cells are not able to renew their lysosomes used in digesting microbes and die after having phagocytosed a few pathogens.

Eosinophiles:-

Eosinophils primarily deal with parasitic infections and an increase in them may indicate such. Eosinophils are also the predominant inflammatory cells in allergic reactions. The most important causes of eosinophilia include allergies such as asthma, hay fever, and hives; and also parasitic infections. Generally their nucleus is bi-lobed. The cytoplasm is full of granules which assume a characteristic pink-orange color with eosin stain.

Basophiles:-

Basophils are chiefly responsible for allergic and antigen response by releasing the chemical histamine causing inflammation. The nucleus is bi- or tri-lobed, but it is hard to see because of the number of coarse granules which hide it. They are characterised by their large blue granules.

Leukocytes - White blood cells - Part 1

White blood cell:-

White blood cells, or leukocytes, are cells of the immune system defending the body against both infectious disease and foreign materials. Several different and diverse types of leukocytes exist, but they are all produced and derived from a multipotent cell in the bone marrow known as a hematopoietic stem cell. Leukocytes are found throughout the body, including the blood and lymphatic system. The number of leukocytes in the blood is often an indicator of disease. There are normally between 4×109 and 11×109 white blood cells in a liter of blood, making up approximately 1% of blood in a healthy adult. In conditions such as leukemia, the number of leukocytes is higher than normal, and in leukopenia, this number is much lower. The physical properties of leukocytes, such as volume, conductivity, and granularity, may change due to activation, the presence of immature cells, or the presence of malignant leukocytes in leukemia.

Types:-

There are several different types of white blood cells. They all have many things in common, but are all different. One primary technique to classify them is to look for the presence of granules, which allows the differentiation of cells into the categories granulocytes and agranulocytes:
Granulocytes: leukocytes characterised by the presence of differently staining granules in their cytoplasm when viewed under light microscopy. These granules are membrane-bound enzymes which primarily act in the digestion of endocytosed particles. There are three types of granulocytes: neutrophils, basophils, and eosinophils, which are named according to their staining properties.

Agranulocytes: leukocytes characterized by the apparent absence of granules in their cytoplasm. Although the name implies a lack of granules these cells do contain non-specific azurophilic granules, which are lysosomes. The cells include lymphocytes, monocytes, and macrophages.

Erythrocytes - Red blood cells

Mammalian erythrocytes

Mammalian erythrocytes have nuclei during early phases of development, but extrude them as they mature in order to provide more space for hemoglobin. Mammalian erythrocytes also lose their other organelles such as their mitochondria. As a result, the cells use none of the oxygen they transport; they produce the energy carrier ATP by fermentation, via glycolysis of glucose followed by lactic acid production. Furthermore, red cells do not have an insulin receptor and thus their glucose uptake is not regulated by insulin. Because of the lack of nuclei and organelles, the red blood cells cannot synthesize any RNA, and consequently they cannot divide or repair themselves.
Mammalian erythrocytes are biconcave disks: flattened and depressed in the center, with a dumbbell-shaped cross section. This shape (as well as the loss of organelles and nucleus) optimizes the cell for the exchange of oxygen with its surroundings. The cells are flexible so as to fit through tiny capillaries, where they release their oxygen load. Erythrocytes are circular, except in the camel family Camelidae, where they are oval.
In large blood vessels, red blood cells sometimes occur as a stack, flat side next to flat side. This is known as rouleaux formation, and it occurs more often if the levels of certain serum proteins are elevated, as for instance during inflammation.
The spleen acts as a reservoir of red blood cells, but this effect is somewhat limited in humans. In some other mammals such as dogs and horses, the spleen sequesters large numbers of red blood cells which are dumped into the blood during times of exertion stress, yielding a higher oxygen transport capacity.

Human Erythrocytes

The diameter of a typical human erythrocyte disk is 6–8 µm, much smaller than most other human cells. A typical erythrocyte contains about 270 million hemoglobin molecules, with each carrying four heme groups.
Adult humans have roughly 2–3 × 1013 red blood cells at any given time (women have about 4 to 5 million erythrocytes per microliter (cubic millimeter) of blood and men about 5 to 6 million; people living at high altitudes with low oxygen tension will have more). Red blood cells are thus much more common than the other blood particles: There are about 4,000–11,000 white blood cells and about 150,000–400,000 platelets in each microliter of human blood.
The red blood cells of an average adult human male store collectively about 2.5 grams of iron, representing about 65% of the total iron contained in the body.

Life cycle

The process by which red blood cells are produced is called erythropoiesis. Erythrocytes are continuously being produced in the red bone marrow of large bones, at a rate of about 2 million per second. (In the embryo, the liver is the main site of red blood cell production.) The production can be stimulated by the hormone erythropoietin , synthesised by the kidney; which is used for doping in sports. Just before and after leaving the bone marrow, the developing cells are known as reticulocytes; these comprise about 1% of circulating red blood cells.
Erythrocytes develop from committed stem cells through reticulocytes to mature erythrocytes in about 7 days and live a total of about 120 days.
The aging erythrocyte undergoes changes in its plasma membrane, making it susceptible to recognition by phagocytes and subsequent phagocytosis in the spleen, liver and bone marrow. Much of the important breakdown products are recirculated in the body. The heme constituent of hemoglobin are broken down into Fe3+ and biliverdin. The biliverdin is reduced to bilirubin, which is released into the plasma and recirculated to the liver bound to albumin. The iron is released into the plasma to be recirculated by a carrier protein called transferrin. Almost all erythrocytes are removed in this manner from the circulation before they are old enough to hemolyze. Hemolyzed hemoglobin is bound to a protein in plasma called haptoglobin which is not excreted by the kidney.